ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
"Μόρφωση είναι εκείνο που μένει όταν έχουμε ξεχάσει καθετί που μάθαμε στο σχολείο." (Α. Αϊνστάιν)
"Ο μαθηματικός είναι ένας τυφλός άνθρωπος σε ένα σκοτεινό δωμάτιο που ψάχνει μια μαύρη γάτα που δεν είναι εκεί." (Δαρβίνος)

Όταν έγινε η πρώτη διάσπαση του ατόμου και κατασκευάστηκε η ατομική βόμβα, ο ίδιος ο Αϊζενχάουερ δήλωσε :
"Σήμερα ευρισκόμεθα στα προπύλαια της ελληνικής μαθηματικής".


Κυριακή, 17 Απριλίου 2011

Μηδέν ή Άριστα, μία αληθινή ιστορία

«Πώς μπορούμε να βρούμε το ύψος ενός ψηλού κτιρίου, χρησιμοποιώντας ένα βαρόμετρο?»

Η απάντηση ενός φοιτητή στην ερώτηση αυτή στις εξετάσεις στο μάθημα της Φυσικής δημιούργησε πρόβλημα στο πανεπιστήμιο , μιας και ο καθηγητής βαθμολόγησε την απάντηση του φοιτητή με μηδέν και ο φοιτητής από την άλλη μεριά ισχυριζόταν ότι η απάντηση του ήταν σωστή και έπρεπε να βαθμολογηθεί με άριστα .  




Τη λύση κλήθηκε  στη διαφωνία να δώσει ο Νομπελίστας πυρηνικός φυσικός Ernest Rutherford (1871 - 1937) που δίδασκε στο ίδιο πανεπιστήμιο .
Ο Rutherford διάβασε την απάντηση του φοιτητή , η οποία έλεγε :
«Παίρνουμε το βαρόμετρο και το ανεβάζουμε στο υψηλότερο σημείο του κτιρίου, το δένουμε στην άκρη ενός νήματος, το κατεβάζουμε μέχρι το επίπεδο του δρόμου, μετά το ξανανεβάζουμε και μετράμε το μήκος του νήματος. Το μήκος του νήματος από το δρόμο ως την κορυφή του κτιρίου είναι το ύψος του κτιρίου».
Ο Ράδερφορντ παραδέχτηκε ότι η απάντηση του φοιτητή ήταν σωστή και πλήρως αιτιολογημένη και δικαίως ζητούσε να βαθμολογηθεί με άριστα . Από την άλλη μεριά όμως , αν έπαιρνε άριστα για την απάντηση του θα πιστοποιούσε αντίστοιχη γνώση του αντικειμένου, πράγμα που δεν αποδεικνυόταν από την απάντηση που είχε δώσει.
Σκέφτηκε τότε να δώσει μία ευκαιρία στον φοιτητή να απαντήσει με διαφορετικό τρόπο στην ερώτηση προκειμένου να ξεκαθαρίσει το θέμα .  
Του έδωσε χρόνο έξι λεπτών για να γράψει την απάντηση του στην ερώτηση , εξηγώντας του ότι η απάντηση του θα πρέπει να αιτιολογηθεί με γνώσεις Φυσικής . Λίγο προτού ολοκληρωθεί ο χρόνος ο φοιτητής δεν είχε γράψει ούτε μία λέξη και ο Ράδερφορντ τον ρώτησε αν σκόπευε να εγκαταλείψει την προσπάθεια αλλά ο φοιτητής τού απάντησε: «Όχι, απλώς έχω πολλές απαντήσεις και προσπαθώ να σκεφτώ ποια είναι η καλύτερη».

Στο επόμενο λεπτό, ο φοιτητής πρόλαβε και έγραψε την απάντηση του  που έλεγε :
«Παίρνω το βαρόμετρο στην κορυφή του κτιρίου και σκύβω πάνω από το κενό. Αφήνω το βαρόμετρο να πέσει και χρονομετρώ την πτώση του. Στη συνέχεια, χρησιμοποιώντας τον τύπο s = 1/2gt2 , υπολογίζω το ύψος του κτιρίου» .
Ο Ράδερφορντ διαβάζοντας την απάντηση του φοιτητή είπε ότι πρέπει να βαθμολογηθεί με άριστα και σε αυτό συμφώνησε και ο καθηγητής .
Καθώς αποχωρούσαν ο Ράδερφορντ ρώτησε τον νεαρό φοιτητή ποιες ήταν οι άλλες απαντήσεις που σκεφτόταν να δώσει στο πρόβλημα .
«Να σας πω», απάντησε ο φοιτητής. «Ένας τρόπος είναι ,αν λάμπει ο ήλιος, παίρνεις το βαρόμετρο, μετράς το ύψος του, το μήκος της σκιάς του και το μήκος της σκιάς του κτιρίου και με απλή μέθοδο των τριών βρίσκεις το ύψος του κτιρίου».
[σ.σ. Είναι περίπου η μέθοδος που λέγεται ότι χρησιμοποίησε ο Θαλής για να μετρήσει το ύψος της πυραμίδας του Χέοπα - όχι βέβαια με βαρόμετρο, αλλά με ανθρώπινη σκιά.]
«Εντάξει», είπε ο Ράδερφορντ. «Και οι άλλες λύσεις;»
«Να», είπε ο φοιτητής, «υπάρχει μια πολύ στοιχειώδης μέθοδος που θα σας αρέσει. Παίρνουμε το βαρόμετρο κι αρχίζουμε να ανεβαίνουμε τα σκαλιά. Καθώς ανεβαίνουμε, χρησιμοποιούμε το βαρόμετρο σαν υποδεκάμετρο και σημαδεύουμε στον τοίχο κάθε φορά το μήκος του βαρόμετρου. Όταν θα έχουμε φτάσει στην κορυφή, μετράμε τα σημάδια και έχουμε το ύψος σε χ μήκη βαρομέτρου».
«Μια πολύ άμεση και μάλλον επίπονη μέθοδος», σχολίασε ο Ράδερφορντ. «Βεβαίως. Αν θέλετε μια πιο εξεζητημένη μέθοδο, μπορείτε να δέσετε το βαρόμετρο στην άκρη ενός νήματος, να το βάλετε να ταλαντεύεται σαν εκκρεμές και να μετρήσετε την τιμή του g (επιτάχυνση βαρύτητας) στο επίπεδο του δρόμου και στην κορυφή του κτιρίου. Από τη διαφορά των δύο τιμών του g, μπορείτε θεωρητικά να υπολογίσετε το ύψος του κτιρίου. Επίσης, θα μπορούσατε να πάρετε το βαρόμετρο στο ψηλότερο σημείο του κτιρίου, και δεμένο όπως πριν στην άκρη ενός νήματος να το χαμηλώσετε μέχρι το επίπεδο του δρόμου και να το βάλετε να ταλαντεύεται σαν εκκρεμές, οπότε μπορείτε να υπολογίσετε το ύψος του κτιρίου από την περίοδο της μετατόπισης».
Ο Ράδερφορντ δεν μπορούσε παρά να συμφωνήσει με τις απαντήσεις του φοιτητή. «Βεβαίως», συνέχισε ο φοιτητής, «υπάρχουν και διάφοροι εναλλακτικοί τρόποι να μάθεις το ύψος του κτιρίου με ένα βαρόμετρο. Ίσως ο καλύτερος είναι να πάρεις το βαρόμετρο στο υπόγειο, να χτυπήσεις την πόρτα του επιστάτη και, όταν σου ανοίξει, να του πεις: Αγαπητέ κύριε, ορίστε ένα καταπληκτικό βαρόμετρο. Θα σας το κάνω δώρο, αν μου πείτε ακριβώς το ύψος αυτού του κτιρίου».
Σ' αυτό πια το σημείο ο Ράδερφορντ ρώτησε το φοιτητή αν ήξερε τη συμβατική λύση του προβλήματος. «Και βέβαια τη γνωρίζω», του απάντησε ο φοιτητής. «Απλώς βαρέθηκα στο σχολείο και στο πανεπιστήμιο να μου λένε συνέχεια οι καθηγητές πώς θα πρέπει να σκέφτομαι».


Το όνομα του φοιτητή ήταν Niels Bohr (1885 – 1962) , ο Δανός που στη συνέχεια της καριέρας του απέδειξε τις θεωρίες του Ράδερφορντ για τα ηλεκτρόνια και έδωσε σημαντική ώθηση στην ανάπτυξη της Κβαντικής Φυσικής.

1 σχόλια:

maths4ever είπε...

μεγαλε Bohr υποκλινομαι..

Δημοσίευση σχολίου